
AMD-V for

Hackers
SATOSHI TANDA (@STANDA_T)

1

Concept of Stealth Hooking

 Hooking: Modify code and execute arbitrary logic

instead of, or on the top of original logic

 Allows us monitoring and altering behavior of

software

 Very useful for reverse engineering software

 Some detects that hooks are installed

 PatchGuard, protectors

 Stealth: Make them invisible from the target, using

SLAT

2

Who I am

 Software Engineer at CrowdStrike

 Reverse Engineer

 Twitter: @standa_t

 Speaker: Recon, BlueHat, Nullcon, CodeBlue

 Hiker, camper, runner, diver, cat lover, husband

etc

 Creator of HyperPlatform – an open source

hypervisor on Windows

3

Motivation

4

Hypervisors are…good

 Powerful

 Interesting

 Manageable

5

Background

 HyperPlatform was created for the community

 DdiMon, MemoryMon, GuardMon

 Lots of adoption and interests

 SimpleSvm was written for AMD users

 Lack of implementation of the useful ideas

 Can we have the feature parity with Intel VT-x

based hypervisors?

6

Basics of HW VT for

Hackers

7

Hypervisor as a tool

 Just a normal Windows driver (.sys)

 Can be developed with Visual Studio, tested in a

VMware

8

Hardware Hardware

Host OS Host OS Hypervisor

Hypervisor

Guest OS Guest OS

Virtualized

Virtualized

Type-2 Hypervisor Hyperjack-type Hypervisor

Hypervisor as a tool

 Once loaded, the driver enables hardware-based

virtualization technology (HW VT) of the processors;

 Set EFER_SVME to IA32_MSR_EFER (Intel: VMXON)

 Sets up a context structure VMCB (Intel: VMCS); and

 Starts virtualization of the processors

 VMRUN (Intel: VMLANCH)

 Processors trigger #VMEXIT (Intel: VM-exit) where your

hypervisor handles

9

Hypervisor as a tool 10

User-Mode

Kernel-Mode

Kernel YourHv.sys

1) Set EFER_SVME

Driver
Driver

Driver

Application
Application

Application

Hypervisor as a tool 11

User-Mode

Kernel-Mode

Kernel
Driver

Driver
Driver

YourHv.sys

Application
Application

Application

3) #VMEXIT

2) Memory access

2) MOV CR3, …
2) Exceptions

Use cases

 System-wide debugger

 Cheat Engine:DBVM

 PatchGuard, rootkit analysis

 HyperBone

 Vulnerability hunting?

12

SLAT: Second Level

Address Translation

AKA, MEMORY VIRTUALIZATION

13

What SLAT is

 SLAT allows a hypervisor to intercept and alter

translation of virtual memory address (VA) to

physical memory address (PA)

 An architecture agnostic term

 Called Rapid Virtualization Indexing (RVI), or
Nested Page Tables (NPT)

 Intel: Extended Page Tables (EPT)

14

How SLAT works

1. The processor performs the regular VA->PA

translation with CR3 and page table structures

2. That PA is called Guest PA (GPA)

3. The processor performs GPA -> System PA (SPA)

with nCR3 and NPTs

 Intel: with the EPT pointer and EPTs

15

Address Translation w/o VT 16

Linear
Address

CR3 & Page
Tables

Physical
Address

Address Translation w/ VT

 Read/Write/Execute permissions can be
configured like the regular PTEs

17

Linear
Address

CR3 & Page
Tables

GPA

GPA

nCR3 &
Nested

Page Tables

System
Physical
Address

Stealth Hooking with SLAT

18

Concept

 Hooking: Modify code and execute arbitrary logic

instead of, or on the top of original logic

 Allows us monitoring and altering behavior of

software

 Very useful for reverse engineering software

 Some detects that hooks are installed

 PatchGuard, protectors

 Stealth: Make them invisible from the target, using

SLAT

19

Implementation

1. Set up two SLAT translations for the target GPA

 Exec: translates to the SPA with hook

 Not readable, not writable but executable (--X)

 ReadWrite: translates to the SPA without hook

 Readable, writable, but not executable (RW-)

2. At the runtime

 On execute access, use Exec translation

 The hook is executed

 On read and write access, use ReadWrite translation

 The hook is not visible and overwritable

20

Implementation on Intel

 Assume ZwQuerySystemInformation is at

0xfffff800`00000000 (VA) => 0xe000 (GPA)

 Hypervisor creates two translations:

 Reading ZwQuerySystemInformation does not

reveal hook

GPA SPA Permission Memory Contents

0xe000 0xe000 RW- Without hook

0xe000 0xf000 --X With hook

21

Implementation on Intel

 On execution, VM-exit occurs due to access

violation

 Hypervisor switches translation and let the processor

retry the same execution

 Hook is executed

GPA SPA Permission Memory Contents

0xe000 0xe000 RW- Without hook

0xe000 0xf000 --X With hook

22

Implementation on Intel

 On read, VM-exit occurs due to access violation

 Hypervisor switches translation and let the processor

retry the same execution

 ZwQuerySystemInformation is read without hook

GPA SPA Permission Memory Contents

0xe000 0xe000 RW- Without hook

0xe000 0xf000 --X With hook

23

On AMD

24

Challenges on AMD

 Not possible to set the execute-only permission

 To be executable, the page must be readable too

GPA SPA Permission Memory Contents

0xe000 0xe000 RW- Without hook

0xe000 0xf000 RWX With hook

25

Challenges on AMD

 On execution, #VMEXIT occurs due to access

violation

 Hypervisor switches translation and let the processor

retry the same execution

 Hook is executed

 The hook remains visible!

GPA SPA Permission Memory Contents

0xe000 0xe000 RW- Without hook

0xe000 0xf000 RWX With hook

26

Solution?

 Trigger #VMEXIT and switch translation to the non-

executable version to hide the hook ASAP?

 Eg, set eflags.TF, let the hypervisor handle it and

switch translation?

 Performance impact is significant

 Consider when the processor want to execute

thousands of instructions on 0xe000

 Every single instruction execution, access violation

and eflags.TF trigger #VMEXIT

27

GPA SPA Permission Memory Contents

0xe000 0xe000 RW- Without hook

0xe000 0xf000 RWX With hook

Partial Solution

 The page must remain executable and readable

for performance

 … while the page is being executed

 Switch translation when the processor goes

outside the page

28

GPA SPA Permission Memory Contents

0xe000 0xe000 RW- Without hook

0xe000 0xf000 RWX With hook

Partial Solution

 Make all other pages non-executable while the

hooked page is executed

29

GPA SPA Permission

0x0 0x0 RW-

0x1000 0x1000 RW-

0x2000 0x2000 RW-

...

0xe000 0xf000 RWX

...

0x8000`0000 0x8000`0000 RW-

Partial Solution

 Make all other pages non-executable while the

hooked page is executed

30

GPA SPA Permission

0x0 0x0 RW-

0x1000 0x1000 RW-

0x2000 0x2000 RW-

...

0xe000 0xf000 RWX

...

0x8000`0000 0x8000`0000 RW-

 When the processor

go outside the page,

#VMEXIT occurs

 Hypervisor restores

permissions of the

pages

Partial Solution

 Make all other pages non-executable while the

hooked page is executed

31

GPA SPA Permission

0x0 0x0 RWX

0x1000 0x1000 RWX

0x2000 0x2000 RWX

...

0xe000 0xf000 RWX

...

0x8000`0000 0x8000`0000 RWX

 When the processor

go outside the page,

#VMEXIT occurs

 Hypervisor restores

permissions of the

pages

Partial Solution

 Make all other pages non-executable while the

hooked page is executed

32

GPA SPA Permission

0x0 0x0 RWX

0x1000 0x1000 RWX

0x2000 0x2000 RWX

...

0xe000 0xe000 RW-

...

0x8000`0000 0x8000`0000 RWX

 When the processor

go outside the page,

#VMEXIT occurs

 Hypervisor restores

permissions of the

pages; and,

 Hide the hook

Limitation

 Hook remains visible from code in the same page

 Further partial solution for the limitation: as soon as hook is executed, switch to the page without
hook (ie, even before jumping out to the other page). Downside is that hook is not executed
from code in the same page + little more perf cost due #VMEXIT for page switching.

33

GPA SPA Permission

0x0 0x0 RW-

0x1000 0x1000 RW-

0x2000 0x2000 RW-

...

0xe000 0xf000 RWX

...

0x8000`0000 0x8000`0000 RW-

Performance Issue

34

Naïve Implementation

 524,288 -1 NTP entries must be updated to change

permission of all pages on a system with 2GB RAM

 2GB = 0x8000`0000 = 0x8000`0000 / 0x1000 = 0x8`0000

 Significant performance impact

 Protip: Measure performance. ALWAYS.

35

Optimization 1

 Use the nesting NPT structures

 Like the regular page structures, NTP is made up of

PML4, PDP, PD, PT

 Updating the permission on PML4 entry changes the

permission of entire 512GB

 PDP=1GB, PD=2MB, PT=4KB

 Update the upper level NTP entries where possible

36

Optimization 2

 Enable optimization of NTP manipulation code even
on Debug build

 Tip: such pure algorithmic code can be tested with an UM
project separately

37

Optimization 3

 Keep the number of hooks one on VMware

 NTP manipulation on VMware is very (VERY) slow

 Performance measurement on VMware is pointless

 To measure performance and impact of

optimization, use a bare metal machine

38

Demo

39

Conclusion

40

Takeaways

 Implementation of stealth hooking on AMD

processors are possible

 But beware of the limitations:

 Hooks remain visible from code in the same page

 Or hooks are not called from code in the same page

 Performance overhead is higher than similar

implementation for Intel processors due to extensive

manipulation of NTP entries

 Any performance measurement must be done on

bare metal

41

Resources

 Learn more about writing hypervisors on AMD

 https://github.com/tandasat/SimpleSvm

 And implementation of stealth hooking

 https://github.com/tandasat/SimpleSvmHook

42

https://github.com/tandasat/SimpleSvm
https://github.com/tandasat/SimpleSvmHook

Thank you
FOR VXCON CREW, AND ALL OF YOU LISTENING <3

43

